欧美精产国品一二三区视频精品久久综合1区2区3区激情,,国产精品综合一区二区不卡久久人妻av无码中文区四季,,日韩内射少妇

<li id="ssoae"><dl id="ssoae"></dl></li>
<table id="ssoae"><wbr id="ssoae"></wbr></table>
  • <li id="ssoae"></li>
  • <code id="ssoae"></code>
  • <li id="ssoae"></li>
  • 
    
  • <button id="ssoae"><tbody id="ssoae"></tbody></button>
    <button id="ssoae"></button>
  • <li id="ssoae"><input id="ssoae"></input></li>
  • <button id="ssoae"></button>
    <button id="ssoae"><tbody id="ssoae"></tbody></button>
    <li id="ssoae"></li>
    <cite id="ssoae"><center id="ssoae"></center></cite>
  • <sup id="ssoae"><tbody id="ssoae"></tbody></sup>
    <code id="ssoae"><tr id="ssoae"></tr></code>
    <rt id="ssoae"><pre id="ssoae"></pre></rt>
    <cite id="ssoae"><pre id="ssoae"></pre></cite>
    • 尼康顯微鏡告訴你,什么是相差顯微鏡?

      相差顯微鏡,在1934年首次描述由荷蘭物理學家釉澤尼克,對比度增強的光學技術,可以利用以產生高對比度的圖像的透明標本,如活細胞(通常在培養(yǎng)物),微生物,薄的組織切片,光刻圖案,纖維,膠乳分散體,玻璃碎片,和亞細胞顆粒(包括核和其它細胞器)。實際上,相位對比技術采用了光學機構翻譯成相應的振幅的變化,它可以是可視化圖像的對比度差異的相位的微小變化。相差顯微鏡的主要優(yōu)點之一是沒有先前被殺害,固定,染色,

      2020-09-03

    • 尼康顯微鏡在活細胞顯微術焦點漂移矯正

      直到80年代末,大多數生命科學研究人員通過捕獲的各種細胞學特征單一的快照使用固定和染色(實際上,非生物)標本研究生物結構的復雜細節(jié)。在過去的幾十年中,然而,研究在生物和醫(yī)學科學已經在很大程度上轉移重點調查了發(fā)生在生命系統(tǒng)的分子,細胞和整個生物體水平上的時間尺度范圍從毫秒到小時浩大的動態(tài)過程。 此過渡到成像活細胞的司機已墊付的發(fā)展顯微儀器,更靈敏的數碼相機,以及新合成和基因編碼的熒光基團,能夠針對

      2020-09-03

    • 奧林巴斯顯微鏡電磁波輻射的性質

      可見光是一種復雜的現(xiàn)象,經典解釋與傳播的光線和波前,基于一個簡單的模型在 17 世紀末由荷蘭物理學家克里斯蒂安 · 惠更斯首次提出的概念。電磁輻射的大家庭,對其中可見光波狀現(xiàn)象屬于 (也被稱為輻射能量),是主車輛輸送能量,通過浩瀚的宇宙。機制的可見光是發(fā)射或吸收的物質,和它可以預見的反應在不同條件下作為它穿越空間和大氣中,形成的顏色在我們的宇宙中存在的基礎。期限電磁波的輻射,由主席先生 Jame

      2020-09-03

    • 奧林巴斯顯微鏡光是粒子或者波嗎?

      可見光的確切性質是一個幾個世紀以來不解的謎。從古代的畢達哥拉紀律希臘科學家大膽假設每一個可見的對象發(fā)出穩(wěn)定的粒子流,而亞里斯多德認為光傳播的方式類似于海洋里的波浪。盡管這些想法在過去的 20 世紀經歷過無數的修改和很大程度的進化,本質的希臘哲學家們所建立的爭議一直持續(xù)到今天。一種觀點設想光一樣的波狀的性質,產生的能量,遍歷的方式類似于蔓延打擾丟棄的石頭后,表面的平靜的池塘的漣漪的空間。反對的觀點

      2020-09-03

    • 奧林巴斯顯微鏡信號噪聲的注意事項

      光學理論提供分辨率顯微鏡是由光學系統(tǒng)的數值孔徑和用于形成圖像的光的波長。為了在實踐中是有意義的,然而,分辨率必須從對比度的定義,并從標本,最終確定信號的電平的測量不確定度的收集的光子數,因此,可以實現(xiàn)圖像的對比度。在激光掃描共焦顯微術,特別是在生物材料,信號電平通常是低,由于在聚焦光束從小型熒光探針體積光獲得數量有限。典型的共聚焦和寬視場顯微鏡的數字圖像的具有不同程度的信號電平的比較示于圖用小針

      2020-09-03

    • 奧林巴斯顯微鏡的圖像亮度

      無論是利用光學顯微鏡的成像方式,圖像的亮度是由物鏡的聚光能力,這是一個數值孔徑函數。正如顯微鏡光源照明亮度的平方器工作的數值孔徑的測定,試樣的圖像亮度的物鏡的數值孔徑的平方成正比。不像在顯微鏡的照明系統(tǒng),形勢然而,物鏡放大倍數確定圖像的亮度也起著重要的作用。事實上,該圖像的亮度的橫向放大率的平方成反比:圖像的亮度∝(Na/m)2在那na是物鏡的數值孔徑和M為放大倍數。在上面的等式給出比透照表示物

      2020-09-03

    • 徠卡顯微鏡Stefan Hell在超高分辨顯微技術諾貝爾化學獎

      瑞典皇家科學院宣布,將2014年諾貝爾化學獎授予埃里克·白茲格(Eric Betzig)、斯蒂芬·黑爾(Stefan W. Hell)和威廉·莫爾納(William E. Moerner),以表彰他們?yōu)榘l(fā)展超高分辨率熒光顯微鏡所作的貢獻。獲獎理由很長時間以來,人們都認為光學顯微技術無法突破一條極限:它永遠不可能獲得比所用光的半波長更高的分辨率,這被稱為“阿貝衍射極限”。然而,2014年諾貝爾化學

      2020-09-03

    • 奧林巴斯顯微鏡電子激發(fā)和發(fā)射

      電子可以從外部源,如激光器,弧光放電燈,和鎢 - 鹵素燈泡吸收能量,并且被提升到更高的能級。這個教程探討如何光子能量是由一個電子吸收以提升到一個更高的能量水平,以及如何將能量可以隨后被釋放,在較低的能量光子的形式,當電子落回到原來的基態(tài)。為了操作的教程,首先使用鼠標光標來翻譯選擇一個激動人心的波長的波長(或能量)滑塊移動到所需的位置。接下來,用鼠標按下藍色脈沖按鈕,這將激發(fā)原子被選擇的波長的光子的

      2020-09-03

    客服熱線

    工作時間9:00-17:00
    021-51602084