欧美精产国品一二三区视频精品久久综合1区2区3区激情,,国产精品综合一区二区不卡久久人妻av无码中文区四季,,日韩内射少妇

<li id="ssoae"><dl id="ssoae"></dl></li>
<table id="ssoae"><wbr id="ssoae"></wbr></table>
  • <li id="ssoae"></li>
  • <code id="ssoae"></code>
  • <li id="ssoae"></li>
  • 
    
  • <button id="ssoae"><tbody id="ssoae"></tbody></button>
    <button id="ssoae"></button>
  • <li id="ssoae"><input id="ssoae"></input></li>
  • <button id="ssoae"></button>
    <button id="ssoae"><tbody id="ssoae"></tbody></button>
    <li id="ssoae"></li>
    <cite id="ssoae"><center id="ssoae"></center></cite>
  • <sup id="ssoae"><tbody id="ssoae"></tbody></sup>
    <code id="ssoae"><tr id="ssoae"></tr></code>
    <rt id="ssoae"><pre id="ssoae"></pre></rt>
    <cite id="ssoae"><pre id="ssoae"></pre></cite>

    奧林巴斯顯微鏡成像,在數(shù)字圖像處理的基本概念

    2020-09-04 09:53:59

    廣泛可用性,成本相對(duì)較低的個(gè)人電腦在數(shù)字圖像處理活動(dòng)的科學(xué)家和一般的消費(fèi)人群已經(jīng)預(yù)示著一場(chǎng)**。 耦合到模擬圖像數(shù)字化(主要是照片),由廉價(jià)的掃描儀和圖像采集與電子傳感器(主要是雖然電荷耦合器件或CCD ),用戶友好的圖像編輯軟件套件已經(jīng)在急劇增加的能力,以提高功能,提取信息,并輕松地修改屬性的數(shù)字圖像。

    奧林巴斯顯微鏡

    數(shù)字圖像處理方式,以矩陣的形式的整數(shù),而不是經(jīng)典的暗房操作或過(guò)濾的隨時(shí)間變化的電壓,所需的模擬圖像和視頻信號(hào)的圖像的可逆的,幾乎無(wú)噪聲的修改。 盡管許多圖像處理算法是非常**的,一般用戶往往適用于數(shù)字圖像的操作,而不用擔(dān)心這些操作背后的基本原則。 ,由于操作不慎往往嚴(yán)重退化或以其他方式損害對(duì)于那些可以生產(chǎn),如果正確使用數(shù)字處理軟件的能力和通用的圖像。

    光學(xué)顯微鏡是一種迅速發(fā)展的領(lǐng)域,已經(jīng)到了高度依賴于數(shù)字圖像處理技術(shù),無(wú)論是對(duì)平衡的美感與化妝品接觸,以及康復(fù)和分析目的。 然而,即使在顯微鏡的正確配置和*佳性能,捕獲數(shù)字圖像往往顯示背景參差不齊,過(guò)多的噪音,畸變失真,對(duì)比度差的重點(diǎn)地區(qū),強(qiáng)度波動(dòng),而且也受到顏色的變化和色彩平衡錯(cuò)誤。此外,看似十分清晰,明快和出色的色彩飽和度在顯微鏡的圖像可以經(jīng)常錯(cuò)位圖像傳感器產(chǎn)生偽影,如走樣,相機(jī)噪音,不當(dāng)伽瑪校正,白平衡偏移,可憐的對(duì)比度,亮度波動(dòng)。

    圖1中顯示的是染色的雙子葉植物葉表皮的薄邊的明照明與標(biāo)準(zhǔn)的光學(xué)顯微鏡中捕獲的數(shù)字圖像。 由于*初成像(圖1(A)),薄的部分顯示了大量的噪音和患有整個(gè)視場(chǎng)照度不均勻,從而導(dǎo)致對(duì)比度差和缺乏標(biāo)本細(xì)節(jié)的定義。 可顯著改善在背景相減,伽瑪校正,直方圖拉伸,調(diào)整色調(diào),色彩平衡,和飽和度,處理后的圖像(圖1(b)條)。

    前處理數(shù)字圖像的評(píng)價(jià)

    已被抓獲,經(jīng)過(guò)數(shù)字圖像處理算法的應(yīng)用程序啟動(dòng)之前,每個(gè)圖像應(yīng)評(píng)估方面的一般特征,包括噪聲,模糊,背景強(qiáng)度的變化,亮度和對(duì)比度,和普通的像素值分布(直方圖輪廓) 。 應(yīng)給予注意陰影區(qū)域,以確定有多少細(xì)節(jié),以及明快的特色(或亮點(diǎn))和地區(qū)的中間像素強(qiáng)度。 這個(gè)任務(wù)是*容易實(shí)現(xiàn)的圖像導(dǎo)入到一個(gè)流行的軟件編輯程序,如Adobe公司的Photoshop,Corel的照片涂料,Macromedia的煙花,或Paint Shop Pro的。

    每個(gè)圖像編輯程序有一個(gè)統(tǒng)計(jì)信息或狀態(tài)的窗口,使用戶把鼠標(biāo)光標(biāo)移到圖像,圖像中的任何位置,具體的像素值,并取得信息。 例如,Photoshop的信息面板提供不斷更新的像素的信息,包括x和y坐標(biāo),RGB(紅色,綠色和藍(lán)色)的顏色值,CMYK(青色,洋紅色,黃色,黑色)的轉(zhuǎn)換的百分比,和的高度和寬度選取框內(nèi)的圖像。 在調(diào)色板中顯示的偏好選項(xiàng)包括選擇色彩空間模型信息讀出。 在模型在Photoshop中灰度,HSB(色調(diào),飽和度和亮度),網(wǎng)頁(yè)顏色(216種顏色,在Windows和Macintosh的8位或顯示256色調(diào)色板重疊),實(shí)際顏色,透明度,和Lab顏色(設(shè)備無(wú)關(guān)的色彩空間)。

    通過(guò)評(píng)估的強(qiáng)度(灰度和彩色)和直方圖中的位置不同的圖像特征,黑色和白色的對(duì)比度調(diào)整的整個(gè)直方圖的拉伸和滑動(dòng)設(shè)置點(diǎn)可以被確定。 圖像也應(yīng)檢查裁剪,飽和白色或曝光不足的黑色區(qū)域在圖像的外觀表現(xiàn)。在一般情況下,應(yīng)該避免削波,無(wú)論是在圖像采集,而正在處理圖像。 平場(chǎng)技術(shù)或背景減法應(yīng)用直方圖操作之前,應(yīng)予以糾正圖像背景強(qiáng)度的變化而受到不利影響。

    查找表

    有幾個(gè)基本的數(shù)字圖像處理算法普遍采用的技術(shù)稱為單一圖像的像素點(diǎn)的操作,執(zhí)行操作的順序單個(gè)像素,而不是大型陣列通過(guò)光學(xué)顯微鏡功能。 用于描述單一圖像的像素點(diǎn)為整個(gè)圖像陣列的過(guò)程的一般方程由下式給出的關(guān)系:

    O(x,y) = M ? [I(x,y)]

    其中I(x,y)表示輸入圖像的像素坐標(biāo)位置(X,Y),O(X,Y)是輸出圖像的像素具有相同的坐標(biāo),M是一個(gè)線性映射函數(shù)。 在一般情況下,映射函數(shù)是一個(gè)公式,輸入像素的亮度值轉(zhuǎn)換成輸出像素中的另一個(gè)值。 由于一些用于圖像處理中的映射函數(shù)可以是相當(dāng)復(fù)雜的,一個(gè)大的圖像上執(zhí)行這些操作,像素由像素,可以是非常耗時(shí)的計(jì)算機(jī)資源的浪費(fèi)。 作為一個(gè)查找表(LUT),用于存儲(chǔ)設(shè)計(jì)成使得其輸出的灰度級(jí)值對(duì)應(yīng)的輸入值是一個(gè)所選的變換的的強(qiáng)度變換函數(shù) (映射功能)是已知的一種替代技術(shù),用于放大圖映射。

    奧林巴斯顯微鏡

    當(dāng)量化為8位(256級(jí)灰度)的每個(gè)像素的亮度值,該值取值范圍在0(黑色)和255(白)之間,產(chǎn)生一個(gè)總的256個(gè)可能的輸出值。 甲查表利用定義的查找表映射函數(shù)的整數(shù)值的一組預(yù)裝的計(jì)算機(jī)存儲(chǔ)器,這是一個(gè)256個(gè)元素的數(shù)組。 因此,當(dāng)使用查找表的圖像必須被應(yīng)用到一個(gè)單一的像素的過(guò)程中,整數(shù)為每個(gè)輸入像素的灰度值被用作一個(gè)地址,指定的256個(gè)元素的數(shù)組中的單個(gè)元素。 該元素的存儲(chǔ)器內(nèi)容(也可在0和255之間的整數(shù)),覆蓋的輸入像素的亮度值(灰度級(jí)),并成為輸出的像素的灰度值。 例如,如果一個(gè)查找表被配置為0和127之間,128和255之間的輸入值返回一個(gè)值為1的輸入值返回一個(gè)值為0,則整體的點(diǎn)過(guò)程將導(dǎo)致在二進(jìn)制輸出圖像有兩套像素(0和1)。 或者,顛倒圖像的對(duì)比度,查表可以返回0的倒數(shù)值為255,1 254,2 253,等等。 查找表,有一個(gè)顯著的通用性,并可以被用來(lái)產(chǎn)生各種各樣的數(shù)字圖像上的操作。

    圖像轉(zhuǎn)換涉及查表可以實(shí)現(xiàn)兩種機(jī)制中的任何一個(gè):使原始圖像數(shù)據(jù)轉(zhuǎn)化在輸入或輸出,使轉(zhuǎn)換后的圖像被顯示,但未經(jīng)修改的原始圖像保持。 原來(lái)的輸入圖像的一個(gè)永久的變換可能是必要的,以糾正在檢測(cè)器的性能(例如,非線性增益特性)的已知的缺陷的數(shù)據(jù)轉(zhuǎn)換為新的坐標(biāo)系(從線性對(duì)數(shù)或指數(shù))。 當(dāng)只應(yīng)該被修改的輸出圖像,進(jìn)行圖像變換的數(shù)字圖像之前被轉(zhuǎn)換回模擬形式,由數(shù)字到模擬的轉(zhuǎn)換器可用于在計(jì)算機(jī)顯示器上顯示。 在某些情況下,變換所指定的輸出查找表(次)的結(jié)果可以直觀地顯示在監(jiān)視器上,但不會(huì)改變?cè)紙D像數(shù)據(jù)。

    查找表不局限于直鏈或單調(diào)函數(shù)的,在信號(hào)處理中使用的各種非線性查找表校正相機(jī)響應(yīng)特性,或強(qiáng)調(diào)一個(gè)狹窄的區(qū)域的灰度級(jí)。 一個(gè)很好的例子是一個(gè)非線性的效用查表校正記錄的影像,已在不經(jīng)意間捕捉到一個(gè)不正確的攝像機(jī)伽瑪調(diào)整。 此外,也可以被轉(zhuǎn)換成單色或彩色圖像,以生成攝影底片。 其他應(yīng)用包括pseudocoloring和S形曲線的查找表,強(qiáng)調(diào)針對(duì)性,強(qiáng)化所需的功能,或調(diào)整圖像的對(duì)比度量的選定范圍的灰度值。

    圖2給出了查找表的映射函數(shù)在使用256陣元內(nèi)存預(yù)加載寄存器和一個(gè)表圖(圖2(a)),和一個(gè)閾值化操作,只用一個(gè)表上圖(圖2的圖像對(duì)比度反轉(zhuǎn)(b)段)。 利用指定的查找表元素的地址的內(nèi)容提供了在存儲(chǔ)器寄存器(圖2(a))的輸出像素的灰度級(jí)的輸入像素的灰度級(jí)。 的平方查表圖介紹根據(jù)輸入像素的輸出像素值計(jì)算的另一種方法。 使用地圖,首先確定輸入像素的灰度級(jí)值,然后延伸的垂直線,從輸入值的映射函數(shù)。 然后一條水平線的垂直線的交叉點(diǎn)和映射函數(shù)繪制在縱軸上的地圖(圖2(b)和2(c)),以產(chǎn)生輸出像素的灰度級(jí)。 在該閾值設(shè)定操作的情況下(圖2(c)),具有低于100的輸入值的所有像素被映射到黑色(0),而其他輸入像素強(qiáng)度是不變的。

    平場(chǎng)校正和背景減法

    顯微鏡,照相機(jī),或其它光學(xué)裝置獲取的數(shù)字圖像經(jīng)常被描述為原始圖像前處理和關(guān)鍵的像素值的調(diào)整(參見(jiàn)圖3)。 在許多情況下,原始圖像是適合用于在目標(biāo)應(yīng)用程序(打印,網(wǎng)頁(yè)顯示,報(bào)告等),但這樣的圖像通常呈現(xiàn)出顯著性水平而產(chǎn)生的光學(xué)和捕捉系統(tǒng)的噪聲和其他構(gòu)件,如鏡頭畸變,檢測(cè)違規(guī)行為(像素的非均勻性和固定模式噪聲),灰塵,劃痕,照度不均勻的扭曲。 另外,不正確的偏置信號(hào)的調(diào)整可以提高像素值*出它本身的測(cè)光值,會(huì)導(dǎo)致顯著的誤差,在測(cè)量的特定的圖像特征的振幅的條件。 在原始圖像中的錯(cuò)誤表現(xiàn)為黑暗的陰影,過(guò)亮的亮點(diǎn),斑點(diǎn),斑點(diǎn)和強(qiáng)度梯度改變真正的像素值。 在一般情況下,這些錯(cuò)誤是尤其明顯,在數(shù)字圖像明亮,均勻的背景,所生產(chǎn)的各種普通顯微鏡的照明模式,包括明場(chǎng),斜,相差,微分干涉對(duì)比DIC)。 熒光圖像中灰色或明亮的背景,雖然比較少見(jiàn),可能會(huì)遭受類似的錯(cuò)誤。

    奧林巴斯顯微鏡

    將原始數(shù)字圖像的平場(chǎng)校正技術(shù),往往能確保光度準(zhǔn)確性和去除常見(jiàn)的圖像缺陷的保真度功能恢復(fù),達(dá)到一種視覺(jué)平衡。 這些校正步驟前應(yīng)進(jìn)行測(cè)量光的振幅或獲得像素強(qiáng)度值等定量信息,雖然是沒(méi)有必要的修正,以顯示或打印圖像。 平場(chǎng)和背景相減技術(shù),通常需要額外的圖像幀的集合的條件下捕獲的主要原材料的標(biāo)本圖像。

    大多數(shù)的平場(chǎng)校正方案利用兩個(gè)補(bǔ)充的圖像幀,除了原始圖像,來(lái)計(jì)算*終的圖像參數(shù)(圖3)。 (a)平場(chǎng)的參考幀取出樣品和捕獲的原始圖像幀在同一焦點(diǎn)的水平特征的視場(chǎng),可以通過(guò)以下方式獲得。 平場(chǎng)參考幀顯示原始圖像相同的亮度水平,并利用全動(dòng)態(tài)范圍的攝像機(jī)系統(tǒng),以減少噪音,在校正后的圖像。 如果兩個(gè)原始圖像平場(chǎng)參考幀有低的信號(hào)幅度,并包含一個(gè)顯著的噪聲量,校正后的圖像也將是黑暗和嘈雜。 為了補(bǔ)償對(duì)噪聲和低強(qiáng)度的,平場(chǎng)的參考幀可以被暴露較長(zhǎng)時(shí)間比用于捕獲原始圖像。 幾個(gè)平均幀(3-20)可以添加在一起,創(chuàng)建一個(gè)主平場(chǎng)具有非常低的噪聲水平的參照系。

    除了 平場(chǎng)的參考幀,收集一個(gè)黑暗的參考幀 ,從而有效記錄的各像素的輸出電平,當(dāng)圖像傳感器暴露在一個(gè)黑暗的場(chǎng)景,缺席顯微鏡照明。 暗幀包含的像素偏置偏移收購(gòu)電子和熱污染的原始圖像的水平和噪聲。 來(lái)自偏移的像素值的正電壓施加到所述圖像傳感器,以便數(shù)字化模擬的強(qiáng)度信息,從每個(gè)光電二極管。 電子噪聲是從攝像機(jī)讀出和相關(guān)人士透露,所產(chǎn)生的動(dòng)能集水井和基于半導(dǎo)體的傳感器基板的硅原子的振動(dòng)和熱噪聲。 總的來(lái)說(shuō),這些噪聲源被稱為暗噪聲 ,在數(shù)字圖像傳感器是一種常見(jiàn)的工件,可以向明顯的像素幅值的20%的。 為了確保光度準(zhǔn)確度,這些資源必須減去平場(chǎng)參考幀和原始圖像。 暗幀生成同期集成的圖像傳感器輸出的原始圖像,但沒(méi)有打開(kāi)相機(jī)的快門。 主暗幀平均幾個(gè)單獨(dú)的暗幀一起,以增加信號(hào)強(qiáng)度,可以制得。

    一旦必要的幀已被收集,平場(chǎng)校正是一個(gè)相對(duì)簡(jiǎn)單的操作,包括多個(gè)連續(xù)的函數(shù)。 首先,主暗幀中減去從原始圖像平場(chǎng)的參考幀,然后由該分割所得到的值(圖3)。 實(shí)際上,該原始幀除以平場(chǎng)的幀后黑暗的幀已被從每幀中減去,并且把商乘以平均像素值,以維持原始和校正后的圖像的強(qiáng)度之間的一致性。 個(gè)人校正后的圖像的像素被限制值介于0和255之間有一個(gè)灰色的水平,作為預(yù)防措施,對(duì)黑暗的參考幀的像素值的情況下,*過(guò)原始圖像的符號(hào)反轉(zhuǎn)。 平場(chǎng)校正,如圖3中所示,顯示與像素?cái)?shù)為原料,平場(chǎng),暗幀,以及校正后的圖像的圖像的選定區(qū)域跨越的強(qiáng)度分布的曲線圖。

    背景減除是一種技術(shù),在本地化在原始圖像中的每個(gè)像素值的改變,根據(jù)在同一背景圖像中的坐標(biāo)位置對(duì)應(yīng)的像素的強(qiáng)度的結(jié)果。 其結(jié)果是,在檢測(cè)器的靈敏度或照明不均勻性(包括斑駁,污垢,劃傷,和亮度梯度)可以得到補(bǔ)償,存儲(chǔ)一個(gè)空的顯微鏡視場(chǎng)的背景圖像作為參考圖像。 視頻增強(qiáng)的對(duì)比度(VEC)顯微鏡是嚴(yán)重依賴于背景減法去除雜散光和高度放大的圖像對(duì)比度差的標(biāo)本文物。 在這種情況下,背景圖像是通過(guò)以下方式獲得的散焦或位移將試樣從視場(chǎng)中。 則產(chǎn)生的背景圖像被存儲(chǔ),并連續(xù)地從原始圖像中減去,產(chǎn)生對(duì)比度的顯著改善。 此技術(shù)也是對(duì)顳比較有用顯示更改或之間viewfields議案的。

    奧林巴斯顯微鏡

    時(shí),它不是可行的捕獲的背景圖像中的顯微鏡,可以人為創(chuàng)造的一個(gè)替代圖像,通過(guò)使一個(gè)表面所捕獲的標(biāo)本圖像的背景(參見(jiàn)圖4)的函數(shù)。 這種人為的背景圖像,然后可以從樣品圖像中減去。 通過(guò)選擇背景,它們位于該圖像中的點(diǎn)的數(shù)目,獲得在不同的位置的亮度值的列表。 然后,可以將得到的信息,利用取得的*小二乘擬合近似背景的表面功能。 在圖4中,8個(gè)可調(diào)節(jié)的控制點(diǎn)用于獲得的*小二乘擬合的背景圖像的表面函數(shù)B(X,Y)的形式:

    B(x, y) = c0 + c1x + c2y + c3x2 + c4y2 + c5xy

    其中,c(0)... C(5)的*小二乘解,(X,Y)表示擬合的背景圖像中的像素的坐標(biāo)。 圖4中的檢體是一個(gè)年輕的海星,用光學(xué)顯微鏡,其被配置為工作在斜光捕獲的數(shù)字。 應(yīng)該選擇這樣的控制點(diǎn),使它們均勻分布在整個(gè)圖像上,并在每個(gè)控制點(diǎn)的亮度電平應(yīng)該是代表的背景強(qiáng)度。 多點(diǎn)放置在一個(gè)小區(qū)域的圖像,而很少或沒(méi)有分配到周邊地區(qū),將導(dǎo)致不良構(gòu)造背景圖像。 一般情況下,背景減法利用作為初始步驟,在提高圖像質(zhì)量,盡管在實(shí)踐中必須附加的圖像增強(qiáng)技術(shù)經(jīng)常被施加到減法圖像,以便獲得有用的結(jié)果。

    平場(chǎng)校正修改過(guò)的影像出現(xiàn)類似的背景減法得到,但執(zhí)行操作師(平場(chǎng)校正)的技術(shù)是*,因?yàn)楫a(chǎn)生光度更準(zhǔn)確的圖像。 這種差異的主要原因,是從光的振幅值來(lái)自乘法的過(guò)程中,結(jié)合的光通量和曝光時(shí)間,圖像結(jié)果。 平場(chǎng)校正技術(shù)的應(yīng)用程序(但不一定是背景相減算法)后,標(biāo)本功能的相對(duì)振幅光度準(zhǔn)確。 作為一個(gè)額外的好處,平場(chǎng)校正除去大多數(shù)的光學(xué)缺陷,在原始圖像中存在的。

    圖像整合

    因?yàn)閿?shù)字圖像組成的矩陣的整數(shù), 求和積分圖像的操作,如可以很容易地以高的速度進(jìn)行。 如果8位分辨率,存儲(chǔ)區(qū)域,或數(shù)字幀存儲(chǔ)器 ,它保存所累積的圖像與原始圖像進(jìn)行數(shù)字化,必須有足夠的容量來(lái)容納*過(guò)8位的總和。 如果假定在一個(gè)8位的數(shù)字圖像的幾個(gè)像素的*大灰度級(jí)值255,則30幀的總和將導(dǎo)致在一個(gè)本地的像素的灰度級(jí)值7650,需要一個(gè)存儲(chǔ)寄存器13 - 位能力。 為了總結(jié)256幀,存儲(chǔ)容量必須等于65536灰度級(jí),或16位,以容納*亮的像素。

    雖然現(xiàn)代計(jì)算機(jī)顯示器能夠顯示圖像的,具有256個(gè)以上的灰度等級(jí)中,對(duì)人眼的反應(yīng)有限(35-50級(jí)灰度)顯示,可以擴(kuò)展到16-bit數(shù)字圖像顯示的局限性和人類視覺(jué)匹配能力。 當(dāng)僅駐留的16位存儲(chǔ)的圖像的一個(gè)子區(qū)域中的圖像中的有用信息,只有這部分的顯示方式。 顯示捕獲的圖像通過(guò)慢掃描CCD照相機(jī)的一個(gè)視場(chǎng)具有大范圍intrascene的強(qiáng)度時(shí),這是一個(gè)有益的做法。 這個(gè)過(guò)程包括尋找視覺(jué)上有意義的部分,通過(guò)16位的圖像。

    當(dāng)用視頻率的模擬或CCD攝像頭獲得的圖像被歸納為一個(gè)16-bit的幀存儲(chǔ)器,顯示有意義的8 - 比特圖像,通常是由一個(gè)常數(shù)除以所存儲(chǔ)的總和。 例如,一個(gè)96幀的一個(gè)視場(chǎng)的總和,可劃分為96次,64次,32次,或24。 除以32是相當(dāng)于利用完整的255灰度級(jí)的范圍內(nèi)的增益,結(jié)果增加了三倍。 然而,除以24是相當(dāng)于四倍的增益增加,結(jié)果,在圖像的飽和度和信息丟失,。

    使用數(shù)字圖像處理技術(shù)的圖像整合往往使可視化淡淡的對(duì)象是勉強(qiáng)以上的相機(jī)噪聲檢測(cè)。 整合可能是特別低微光成像時(shí)圖像的亮度值不能增加額外的圖像增強(qiáng)。 然而,重要的是要認(rèn)識(shí)到,從信號(hào)噪聲考慮,總是優(yōu)選直接在感應(yīng)器上的集成處理軟件中的集成。 每個(gè)圖像集成一步在軟件中引入了模擬到數(shù)字噪聲以及相機(jī)讀出噪聲。

    數(shù)字圖像的直方圖調(diào)整

    的光學(xué)裝置,諸如照相機(jī)或顯微鏡拍攝的數(shù)字圖像的大部分,需要的查找表或圖像的直方圖進(jìn)行優(yōu)化調(diào)整亮度,對(duì)比度,和一般的圖像的可見(jiàn)性。 的數(shù)字圖像的直方圖提供了圖像的對(duì)比度和亮度特性的圖形表示,用于評(píng)價(jià)對(duì)比度的不足之處,如低或高的對(duì)比度,動(dòng)態(tài)范圍不足。 一種圖像直方圖是一個(gè)圖表,顯示與對(duì)于任何給定的bin的值在y軸上的像素的數(shù)量(或相對(duì)數(shù)量)的x軸(稱為作為一個(gè) bin)上的輸入像素值。 每個(gè)出紙架中的灰度級(jí)直方圖描述了圖像中的像素的子組,按灰度級(jí)排序。 的數(shù)值范圍的輸入值,或箱上的x軸通常對(duì)應(yīng)于所捕獲的圖像的位深度(0-255為10-bit的圖像為8位圖像,0-1023,0-4095 12位的圖像)。 直方圖本身可以進(jìn)行數(shù)學(xué)運(yùn)算,以改變相對(duì)箱分布在任何灰度級(jí)。 操縱的直方圖可以糾正不良的對(duì)比度和亮度,極大地提高了數(shù)字圖像質(zhì)量。

    直方圖拉伸涉及修改圖像中的亮度(強(qiáng)度)的像素值,根據(jù)指定了輸出為每個(gè)輸入像素的亮度值的像素的亮度值(參見(jiàn)圖5)的一個(gè)映射函數(shù)。 對(duì)于灰度數(shù)字圖像,這個(gè)過(guò)程很簡(jiǎn)單。 對(duì)于一個(gè)RGB顏色空間的數(shù)字圖像,直方圖拉伸可以通過(guò)轉(zhuǎn)換圖像的色調(diào),飽和度,亮度(HSI)的圖像的彩色空間表示,并單獨(dú)施加的亮度映射操作的強(qiáng)度信息。 下面的映射函數(shù)經(jīng)常用來(lái)計(jì)算像素的亮度值:

    Output(x, y) = (Input(x, y) - B) / (W - B)

    在上面的公式中,假定強(qiáng)度范圍介于0.0和1.0,0.0,較黑和1.0代表白色。 變量 B表示對(duì)應(yīng)于黑電平的強(qiáng)度值,而白電平對(duì)應(yīng)的強(qiáng)度值的變量 W表示的。 在某些情況下,這是可取的,以便有選擇地修改的圖像部分中一個(gè)非線性映射函數(shù)應(yīng)用到數(shù)字圖像。

    直方圖均衡化 (也稱為為直方圖的流平性 )是一種相關(guān)技術(shù),這會(huì)導(dǎo)致在重新分配的像素的灰度級(jí)的值,以便在整個(gè)范圍內(nèi)的灰度級(jí)利用每個(gè)bin的數(shù)目的計(jì)數(shù)保持不變。 過(guò)程產(chǎn)生一個(gè)的水平配置文件是沒(méi)有峰的平面圖像的直方圖。 的像素值被重新分配,以確保每個(gè)灰度級(jí)包含相等數(shù)目的像素,同時(shí)保留在原始圖像中的像素值的次序。 均衡往往是利用圖像對(duì)比度極低其中大多數(shù)像素具有幾乎相同的值,并沒(méi)有很好地回應(yīng)傳統(tǒng)直方圖拉伸算法,以提高對(duì)比度。 該技術(shù)是有效的治療無(wú)特色深,并且平場(chǎng)的幀,并與低振幅梯度營(yíng)救圖像。 與此相反,直方圖拉伸位灰度級(jí)的值,以覆蓋整個(gè)范圍內(nèi)均勻。 自動(dòng)增強(qiáng)自動(dòng)水平  對(duì)比度 )功能的許多圖像處理軟件產(chǎn)品的利用這些基于直方圖變換的圖像。

    奧林巴斯顯微鏡

    數(shù)字圖像的直方圖,可以在將顯示在幾個(gè)不同的灰度級(jí)值的像素?cái)?shù)目與傳統(tǒng)的線性的x和y重復(fù)的圖案, 對(duì)數(shù)的直方圖,圖上的x軸的輸入像素值與具有該值的像素,在y的數(shù)量軸,利用對(duì)數(shù)標(biāo)尺。 這些直方圖是有用的研究,包括少數(shù)的圖像的像素值,直方圖拉伸,但表現(xiàn)出了強(qiáng)烈的反響。 通常使用的另一種變化, 集成累積直方圖 ,重復(fù)輸入的像素值上的x軸和具有x的值的所有像素,并降低的累計(jì)次數(shù),在y軸。 累積直方圖往往利用聚集在相襯,DIC,明照明模式,往往有淺色背景的圖像調(diào)節(jié)對(duì)比度和亮度。

    在某些情況下,圖像區(qū)域的強(qiáng)度非常高,表現(xiàn)有大面積的峰附近的直方圖255個(gè)灰度級(jí),其中視頻信號(hào)的飽和,已提供的所有像素在*大灰度值。 這種情況被稱為灰度電平削波 ,通常表示,在數(shù)字圖像中已丟失了一定程度的細(xì)節(jié),因?yàn)?,原始圖像的一些區(qū)域可能具有不同的強(qiáng)度,已分別被分配給相同的灰度值。 裁剪的直方圖在某些情況下是可以接受的,如果不重要的部分的圖像細(xì)節(jié)丟失。 這樣的情況可能會(huì)發(fā)生,例如,如果該系統(tǒng)已被調(diào)整,以*大限度地提高染色的組織切片的對(duì)比度,在光照下,與削波只出現(xiàn)在明亮的背景區(qū)域,那里沒(méi)有細(xì)胞結(jié)構(gòu)。

    空間卷積核(或面罩)

    部分的***的圖像處理工具利用多像素的操作,由一些相鄰的輸入像素值的貢獻(xiàn),其中每個(gè)輸出像素的整數(shù)值被改變。 這些操作被稱為經(jīng)典空間卷積,并涉及從原始圖像中的像素的卷積核的形式或卷積模板與相應(yīng)的象素陣列的一組選定的乘法。 循環(huán)卷積的數(shù)學(xué)變換的像素,進(jìn)行了不同于簡(jiǎn)單的加法,乘法或除法的方式,圖6中所示的一個(gè)簡(jiǎn)單的銳化卷積核掩模。

    在*簡(jiǎn)單的形式中,一個(gè)二維卷積運(yùn)算的數(shù)字圖像利用一箱卷積核 。 卷積核的典型特征為奇數(shù)的行和列中的一個(gè)正方形的形式,用3×3像素的掩碼(卷積核)是*常見(jiàn)的形式,但5×5和7×7的內(nèi)核,也經(jīng)常采用。 卷積運(yùn)算的原始輸入圖像的每個(gè)像素單獨(dú)執(zhí)行,并涉及到三個(gè)連續(xù)的操作,這是在圖6中。 在操作開(kāi)始時(shí)重疊在原始圖像上以這樣的方式與單個(gè)像素的位置從輸入圖像進(jìn)行卷積,掩模的中心像素進(jìn)行匹配的卷積核。 這被稱為像素作為目標(biāo)像素 。

    奧林巴斯顯微鏡

    接著,在原來(lái)的(通常被稱為 )圖像的每一個(gè)像素的整數(shù)值乘以由上覆掩模(圖6)中的相應(yīng)值。 這些乘積相加,在目標(biāo)圖像中的目標(biāo)像素的灰度值被替換的所有產(chǎn)品的總和,結(jié)束操作。 然后,卷積核易位在源圖像中,成為在目標(biāo)圖像中的目標(biāo)像素的下一個(gè)像素,直到已經(jīng)在原始圖像中的每個(gè)像素由內(nèi)核對(duì)象。

    在一般情況下,利用卷積核的數(shù)值通常是整數(shù),可以取決于所需的操作時(shí),其分頻。 此外,因?yàn)樵S多的卷積操作的結(jié)果的負(fù)的值(注意,一個(gè)卷積核的整數(shù)的值可以是負(fù)的),偏移值也常常適用于還原一個(gè)正值。 圖7(a)中示出的平滑卷積核的統(tǒng)一有一個(gè)值,該值在矩陣中的每個(gè)單元格,帶有分頻值為9和偏移為零。 核矩陣為8位灰度圖像往往受限因子和偏移量的選擇,使所有加工值介于0和255之間的卷積秋天。 許多流行的軟件產(chǎn)品的設(shè)計(jì)進(jìn)行微調(diào)的信息的類型,為一個(gè)特定的應(yīng)用程序中提取用戶指定的卷積核。

    卷積內(nèi)核是有用的多種數(shù)字圖像處理作業(yè),包括平滑嘈雜的圖像(空間平均),并利用拉普拉斯算子的邊緣增強(qiáng),圖像銳化銳化,梯度過(guò)濾器(卷積內(nèi)核的形式)。 此外,局部對(duì)比度可以通過(guò)調(diào)整*大值,*小值,或中值濾波器的使用,和圖像可以從空間變換到頻域的(實(shí)際上,執(zhí)行傅立葉變換)與卷積核。 卷積核的總數(shù)為圖像處理開(kāi)發(fā)是巨大的,但幾個(gè)過(guò)濾器可以廣泛的應(yīng)用在許多流行的圖像處理軟件。

    平滑的卷積過(guò)濾(空間平均)

    專門的卷積核,通常被稱為平滑濾波器 ,在降低數(shù)字圖像中的隨機(jī)噪聲是非常有用的。 在圖7(a)示出一個(gè)典型的平滑卷積濾波器,本質(zhì)上是具有的整數(shù)值為1的每個(gè)行和列的矩陣。 與此不同的內(nèi)核,當(dāng)圖像被卷積的各像素的灰度值被替換為八個(gè)*接近的鄰居和本身的平均強(qiáng)度。 數(shù)字圖像中的隨機(jī)噪聲表現(xiàn)雜散像素,具有異常高或低強(qiáng)度值。 如果重疊卷積核的任何像素的灰度值是顯著不同的比它的鄰居,該過(guò)濾器的平均化效果將趨于減小分發(fā)的所有相鄰像素之間的噪聲影響。

    奧林巴斯顯微鏡

    圖7中所示的9個(gè)整數(shù),在每個(gè)平滑內(nèi)核時(shí),加至一個(gè)1值相加,并在矩陣中的值的數(shù)目除以。 被設(shè)計(jì)成使得在這些內(nèi)核的卷積運(yùn)算,將產(chǎn)生一個(gè)輸出圖像的平均亮度的輸入圖像(然而,在某些情況下,這可能是*的近似)等于。 在一般情況下,在大多數(shù)卷積核的總和加到0和1之間的值,以避免創(chuàng)建輸出圖像的灰度值*越用來(lái)顯示圖像的數(shù)字至模擬轉(zhuǎn)換器的動(dòng)態(tài)范圍。

    平滑卷積核作為低通濾波器來(lái)抑制圖像中的高空間頻率的貢獻(xiàn)。 的術(shù)語(yǔ)的空間頻率相對(duì)于時(shí)間(時(shí)間頻率)頻率的概念是類似的,并且相對(duì)于在圖像中的位置描述的信號(hào)變化的速度。 甲低空間頻率可能會(huì)表現(xiàn)出只有幾個(gè)周期的整個(gè)寬度的圖像,而空間頻率高經(jīng)常顯示在相同的線性尺寸的許多循環(huán)。 一個(gè)很好的例子是由硅藻硅藻,在很短的距離非常高,低強(qiáng)度之間交替展出微型的毛孔及皮紋分鐘的有序陣列。 甲低空間頻率的圖像的整個(gè)寬度(表現(xiàn)為廣泛分布的條紋,例如),可能會(huì)表現(xiàn)出只有幾個(gè)周期,而一個(gè)高空間頻率發(fā)生了許多循環(huán)跨越的圖像的橫向尺寸。 的*高空間頻率的數(shù)字圖像,可以顯示在一個(gè)周期等于兩個(gè)象素的寬度。

    通常在數(shù)字圖像中觀察到的不同的隨機(jī)噪聲具有較高的空間頻率,可有效地除去施加平滑卷積核的圖像中,像素由像素。 然而,其他“真正的”形象特征是可取的,如對(duì)象的邊界和精細(xì)結(jié)構(gòu)的細(xì)節(jié),也有可能不幸被抑制平滑濾波器具有高空間頻率。 因此,應(yīng)用程序往往會(huì)產(chǎn)生一個(gè)平滑卷積核模糊輸入圖像的不良影響。 此外,較大的內(nèi)核((5×5),(7×7),9×9),更嚴(yán)重的這種模糊效果(圖8)。 對(duì)于大多數(shù)應(yīng)用,平滑內(nèi)核的大小和形式,必須仔細(xì)選擇以優(yōu)化降噪和圖像劣化之間的權(quán)衡。 高斯濾波器是一個(gè)平滑濾波器是一個(gè)高斯函數(shù)的卷積內(nèi)核的基礎(chǔ)上,并提供*少量的空間模糊的任何所需量的減少隨機(jī)噪聲。 平滑濾波器是很好的工具,具有低信號(hào)噪聲比顆粒狀圖像進(jìn)行簡(jiǎn)單的外觀上的改進(jìn),但這些過(guò)濾器也可以不必要的后果降低圖像分辨率。

    銳化卷積濾波器

    在直接對(duì)比平滑卷積濾波器的作用,銳化濾鏡旨在提高較高的空間頻率,在數(shù)字圖像,同時(shí)抑制較低頻率。圖圖7(c)中示出一個(gè)典型的3×3的卷積掩模,其上用光學(xué)顯微鏡拍攝的數(shù)字圖像的效果。 除了提高標(biāo)本邊界和精致的細(xì)節(jié),銳化濾鏡也有消除緩慢變化的背景陰影的效果。 因此,有時(shí)可以利用這些過(guò)濾器的遮光校正圖像中的失真,而不必訴諸背景減除算法。 不幸的是,銳化卷積濾波器具有提高數(shù)字圖像中的隨機(jī)噪聲的不良影響。

    奧林巴斯顯微鏡

    內(nèi)核的大小可以調(diào)整,以優(yōu)化銳化濾鏡的影響,并進(jìn)行微調(diào)操作在一個(gè)特定的范圍內(nèi)的空間頻率的掩模。 一個(gè)典型的3×3掩模(參見(jiàn)圖6和7)圖像特征間的差異*過(guò)了單個(gè)像素的間距間隔上具有*大的影響。 內(nèi)核大小的兩倍或三倍的目標(biāo),跨越兩個(gè)或兩個(gè)以上的像素較低的空間頻率。

    卷積濾波器中位數(shù)

    卷積核中位數(shù)主要用于去除圖像中的噪聲,但也非常有效消除故障的像素(具有異常高或低亮度值),減少細(xì)微的劃痕引起的劣化。 這些過(guò)濾器通常是更有效地去除噪聲比平滑(低通)卷積核。 中位數(shù)內(nèi)核應(yīng)用的方式是不同的標(biāo)準(zhǔn)平滑或銳化內(nèi)核。 雖然中值濾波器采用一個(gè)內(nèi)核,從像素到像素的換算,也沒(méi)有以典型的方式施加的卷積矩陣。 在每一個(gè)連續(xù)的像素位置,正在審議的像素卷積核下令排名根據(jù)強(qiáng)度的幅度。 一個(gè)中間值,然后確定所涵蓋的內(nèi)核的所有的像素,并且該值被分配給在輸出圖像中的中心像素的位置。

    中值濾波器除去,往往發(fā)生在顯微鏡拍攝的數(shù)字圖像的隨機(jī)尖峰強(qiáng)度是有用的。 造成的尖峰的像素被替換為相應(yīng)的部件選擇由內(nèi)核疊加,這將產(chǎn)生一個(gè)更均勻的外觀在處理后的圖像的像素的中值。 罕見(jiàn)的強(qiáng)度峰值的背景區(qū)域,其中包含以統(tǒng)一的方式呈現(xiàn),通過(guò)中值濾波器的內(nèi)核。 另外,因?yàn)閮?nèi)核中位數(shù)的保留邊緣,細(xì)標(biāo)本細(xì)節(jié)和邊界,通常采用具有高對(duì)比度的圖像處理。

    專用卷積濾波器

    衍生過(guò)濾器提供的定量測(cè)量,在本數(shù)字圖像中的像素的亮度信息的變化率。 當(dāng)一個(gè)微分濾波器被應(yīng)用到的數(shù)字圖像,由此產(chǎn)生的數(shù)據(jù),可以使用亮度波動(dòng)率,以提高對(duì)比度,邊緣檢測(cè)和邊界,并測(cè)量功能取向。 其中一個(gè)*重要的衍生過(guò)濾器是Sobel濾波器,這是基于卷積運(yùn)算,可以制作的衍生物,在八個(gè)方向,根據(jù)選擇的非對(duì)稱3×3內(nèi)核掩模。 在這些的卷積是非常有用的,在顯微鏡拍攝的數(shù)字圖像的邊緣增強(qiáng)。 邊緣通常都是在微觀結(jié)構(gòu)中*重要的特征之一,通??梢詫⑵溆糜跍y(cè)量后,適當(dāng)?shù)脑鰪?qiáng)算法已經(jīng)被應(yīng)用。

    計(jì)算拉普拉斯過(guò)濾器(通常被稱為運(yùn)營(yíng)商 )的強(qiáng)度相對(duì)于位置的二階導(dǎo)數(shù)和用于確定一個(gè)像素是否駐留在較暗或較亮的一側(cè)的邊緣是有用的。 拉普拉斯算子的的增強(qiáng)操作產(chǎn)生尖峰的邊緣部位,并強(qiáng)調(diào)了任何亮度斜率,無(wú)論它是否是正還是負(fù),此過(guò)濾器,不給予全向質(zhì)量。 有趣的是,要注意的是在人的視覺(jué)系統(tǒng),眼腦網(wǎng)絡(luò)應(yīng)用拉普拉斯風(fēng)格的增強(qiáng)的視場(chǎng)中的每個(gè)對(duì)象。 人類的視覺(jué),可以是模擬的應(yīng)用拉普拉斯算子增強(qiáng)圖像的原始圖像,使用了雙圖像點(diǎn)的過(guò)程中,以產(chǎn)生一個(gè)修改后的圖像顯得更清晰,更悅目。

    的卷積過(guò)程方法中心的事實(shí)卷積核將*出邊界的圖像時(shí),它是適用于邊境像素內(nèi)產(chǎn)生的一個(gè)重要問(wèn)題。 的一種技術(shù)通常用來(lái)解決這個(gè)問(wèn)題,稱為中心,零邊界疊加 ,是簡(jiǎn)單地忽略的問(wèn)題的像素,只對(duì)那些位于邊界足夠的距離的像素進(jìn)行卷積運(yùn)算。 此方法的缺點(diǎn)的生產(chǎn)小于輸入圖像的輸出圖像。 第二種方法,稱為中心,以零填充疊加 ,涉及零填充丟失的像素。 然而,第三個(gè)技術(shù)方面的圖像作為一個(gè)平鋪陣列相同的圖像中的單個(gè)元素,使丟失的像素從圖像的相對(duì)側(cè)。 這種方法被稱為中心,反射邊界疊加 ,具有的優(yōu)點(diǎn)是可以使用運(yùn)算的象素地址的計(jì)算,以消除需要考慮作為一種特殊情況的邊界像素。 這些技術(shù)中的每一個(gè)都為特定的圖像處理中的應(yīng)用是有用的。 零填充和反射邊界方法通常適用于圖像增強(qiáng)濾波技術(shù),而零邊界的方法通常利用邊緣檢測(cè)和空間導(dǎo)數(shù)的計(jì)算。

    USM銳化過(guò)濾

    銳化掩模算法由一個(gè)模糊的圖像從原始圖像中,然后通過(guò)調(diào)整該差分圖像中的灰度級(jí)值的加減操作。 此操作,可以保存的高頻細(xì)節(jié),同時(shí)允許陰影校正和背景抑制。 流行的技術(shù),是一個(gè)極好的車輛,以提高精細(xì)標(biāo)本細(xì)節(jié)并沒(méi)有明確的定義在原始圖像的銳化邊緣。 反銳化掩模工藝的*步是產(chǎn)生輕微的模糊(通過(guò)高斯低通濾波器),未改性的原稿,然后減去,以產(chǎn)生一個(gè)銳化后的圖像的原始圖像的振幅減少。 在圖像中,具有均勻的振幅的地區(qū)提供在培養(yǎng)基中的灰度的亮度電平,而較大的斜坡(邊和邊界)的區(qū)域顯示為較亮或較暗的梯度。

    在一般情況下,USM銳化過(guò)濾器從原始圖像中減去適當(dāng)?shù)募訖?quán)USM銳化(模糊原件)段運(yùn)行。 這種減法運(yùn)算增強(qiáng)高頻空間的細(xì)節(jié)圖像中的低頻空間信息的費(fèi)用(衰減)。 產(chǎn)生這種情況的,因?yàn)檫€沒(méi)有從原始圖像中減去由高斯濾波器的銳化掩模除去高頻空間的細(xì)節(jié)。 此外,低頻空間通過(guò)高斯濾波器(銳化掩模)的細(xì)節(jié),幾乎完全從原始圖像中減去。 增加的高斯濾波器的大小通常會(huì)導(dǎo)致過(guò)濾器,以產(chǎn)生更清晰的圖像銳化掩模。

    其他銳化濾鏡USM銳化過(guò)濾器的主要優(yōu)點(diǎn)之一是控制的靈活性,因?yàn)榇蠖鄶?shù)其他過(guò)濾器不提供任何用戶可調(diào)參數(shù)。 其他銳化濾鏡一樣,USM銳化過(guò)濾器提高了數(shù)字圖像的邊緣和細(xì)節(jié)。 由于銳化濾鏡也抑制低頻的細(xì)節(jié),這些濾波器可用于校正的圖像的形式緩慢變化的背景強(qiáng)度,通常表現(xiàn)在整個(gè)遮光失真。 不幸的是,銳化濾鏡的濾波圖像中的噪聲增加,也有不希望的副作用。 出于這個(gè)原因,銳化掩模濾波器應(yīng)該保守使用,并且應(yīng)尋求合理的平衡之間的增強(qiáng)的細(xì)節(jié)和噪聲的傳播。

    傅立葉變換

    付里葉變換的基礎(chǔ)上的定理,即任何調(diào)和函數(shù)可以表示為一系列的正弦和 余弦函數(shù),只是在不同的頻率,振幅和相位。 這些變換顯示從其中衍生的原有功能的諧波分量的頻率和振幅之間的關(guān)系。 付里葉變換轉(zhuǎn)換成在空間變化的一個(gè)函數(shù),隨頻率變化的另一項(xiàng)功能。 還應(yīng)當(dāng)指出的是,發(fā)現(xiàn)的原始功能的*高空間頻率相差的付里葉變換的原點(diǎn)*遠(yuǎn)。

    奧林巴斯顯微鏡

    空間濾波的傅立葉技術(shù)可以被用來(lái)通過(guò)刪除的高或低的空間頻率信息從圖像設(shè)計(jì)是在適當(dāng)?shù)念l率的非傅里葉濾波器處理圖像。 這種技術(shù)是特別有用的人字形鋸齒模式往往是明顯的,在視頻圖像中(參見(jiàn)圖9),如從圖像中消除諧波噪聲。 因?yàn)橹C波噪聲增加,這將是發(fā)現(xiàn)了傅立葉變換的局部離散區(qū)域。 當(dāng)這些局部峰值從變換用適當(dāng)?shù)倪^(guò)濾器中移除,重新形成的圖像不同的違規(guī)模式不存在本質(zhì)上是不變的。 類似的濾波技術(shù)也可以應(yīng)用于去除正弦波,云紋,半色調(diào),和干涉圖案,以及從視頻信號(hào),CCD芯片,電源供應(yīng)器,電磁感應(yīng)噪聲。

    圖9所示的(a)是在暗場(chǎng)照明成像硅藻frustule的疊加的鋸齒干涉圖案的視頻圖像。 相鄰的的硅藻圖像(圖9(b)),其中包含的空間頻率信息的圖像的傅立葉變換的功率譜。 申請(qǐng)幾個(gè)過(guò)濾器(圖9(D)),并重新形成圖像后,已有效地消除鋸齒紋(圖9(c)條),只留下圖像frustule。

    正在考慮申請(qǐng)的決定取決于是否利用傅立葉濾波或卷積核口罩。 傅立葉變換是一個(gè)復(fù)雜的操作,需要更多的計(jì)算機(jī)馬力和卷積操作使用的內(nèi)存比一個(gè)小面具。 但是,傅立葉濾波技術(shù)通常比同等的卷積運(yùn)算更快,尤其是當(dāng)卷積掩模大,接近原始圖像的大小。 選用合適的等效傅立葉和卷積操作可能會(huì)降低各自的面具的復(fù)雜性。 例如,一個(gè)簡(jiǎn)單的傅立葉過(guò)濾器,如旨在消除諧波噪聲,會(huì)產(chǎn)生一個(gè)龐大而復(fù)雜的卷積掩模,這將是很難使用的。

    傅立葉變換的另一個(gè)有用的功能源于從它的關(guān)系的卷積運(yùn)算,這涉及幾個(gè)乘法和加法運(yùn)算,根據(jù)卷積掩模的內(nèi)容,以確定每個(gè)目標(biāo)像素的強(qiáng)度。 此操作可以比較傅立葉濾波,傅立葉過(guò)濾器中的每個(gè)值被簡(jiǎn)單地乘以其相應(yīng)的像素的圖像的傅立葉變換。 是相關(guān)的,因?yàn)檫@兩個(gè)操作的卷積操作是相同的傅立葉濾波操作時(shí),傅立葉濾波器的傅里葉變換的卷積掩碼。 這種等價(jià)表示,這兩種技術(shù)之一可以被用來(lái)從圖像中獲得相同的結(jié)果,僅依賴于操作者決定是否工作在圖像空間傅立葉空間 

    結(jié)論

    數(shù)字化視頻或CCD生成電子顯微鏡拍攝的圖像的能力的顯著增加,以增強(qiáng)功能,提取信息,或修改影像。 乍一看,數(shù)字方式的更高處理能力的程度可能會(huì)不被贊賞,特別是在比較舊的,顯然簡(jiǎn)單的模擬方法,如傳統(tǒng)的顯微攝影膠片上。 事實(shí)上,數(shù)字圖像處理,而不是使可逆的,幾乎無(wú)噪聲的修改的圖像作為一個(gè)整數(shù)矩陣為一系列隨時(shí)間變化的電壓,或者更原始的是,在暗室中使用的照相放大機(jī)。

    大部分的*新進(jìn)展在高分辨率透射光學(xué)顯微鏡和低微光反射熒光顯微鏡觀察活細(xì)胞一直依賴數(shù)字圖像處理。此外,大多數(shù)聚焦和多光子顯微鏡嚴(yán)格依賴于高速,高保真掃描圖像的數(shù)字化,并在隨后的數(shù)字操縱視顯示。 較新的顯微鏡設(shè)計(jì)缺乏目鏡(目鏡)和直接連接到圖像采集軟件,還取決于圖像處理技術(shù),生產(chǎn)出高品質(zhì)的數(shù)字圖像從顯微鏡。

    數(shù)字圖像處理,提取信息噪音或低對(duì)比度的圖像,這些圖像中要加強(qiáng)外觀的力量已導(dǎo)致一些研究者依靠技術(shù)而不是*佳的調(diào)整和使用顯微鏡或圖像傳感器。 不約而同地,高品質(zhì)的光學(xué)圖像,無(wú)污物,雜物,噪聲,畸變,眩光,劃痕,文物開(kāi)始,產(chǎn)生***的電子圖像。 仔細(xì)調(diào)整和適當(dāng)?shù)男U膱D像傳感器將導(dǎo)致更高質(zhì)量的數(shù)字圖像,充分利用兩者的傳感器和數(shù)字圖像處理系統(tǒng)的動(dòng)態(tài)范圍